Period 1

D1.2 "B5G Wireless Tb/s FEC KPI Requirements and Technology Gap Analysis" [February 2018]
This report will determine the FEC performance requirement set for the EPIC project and wireless Tb/s use-cases in general. This report will set the performance targets for the FEC development work in the rest of the project.

D4.1 "Architecture refinement and optimization report" [February 2019]
This report will present the different proposed refinements and optimizations related to the architectural templates for the Turbo, LDPC, and Polar codes.

The EPIC project uses Zenodo as its open research data repository, in order to grant Open Access to scientific publications. Check out our Zenodo community EPIC!



expand[ More ]

Abstract: The continuing trend towards higher data rates in wireless communication systems will, in addition to a higher spectral efficiency and lowest signal processing latencies, lead to throughput requirements for the digital baseband signal processing beyond 100 Gbit/s, which is at least one order of magnitude higher than the tens of Gbit/s targeted in the 5G standardization. At the same time, advances in silicon technology due to shrinking feature sizes and increased performance parameters alone won’t provide the necessary gain, especially in energy efficiency for wireless transceivers, which have tightly constrained power and energy budgets. In this paper, we highlight the challenges for wireless digital baseband signal processing beyond 100 Gbit/s and the limitations of today’s architectures. Our focus lies on the channel decoding and MIMO detection, which are major sources of complexity in digital baseband signal processing. We discuss techniques on algorithmic and architectural level, which aim to close this gap. For the first time we show Turbo-Code decoding techniques towards 100 Gbit/s and a complete MIMO receiver beyond 100 Gbit/s in 28 nm technology.


Background Image